Supersymmetric Bethe Ansatz and Baxter Equations from Discrete Hirota Dynamics

نویسندگان

  • Vladimir Kazakov
  • Alexander Sorin
  • Anton Zabrodin
چکیده

We show that eigenvalues of the family of Baxter Q-operators for supersymmetric integrable spin chains constructed with the gl(K|M)-invariant R-matrix obey the Hirota bilinear difference equation. The nested Bethe ansatz for super spin chains, with any choice of simple root system, is then treated as a discrete dynamical system for zeros of polynomial solutions to the Hirota equation. Our basic tool is a chain of Bäcklund transformations for the Hirota equation connecting quantum transfer matrices. This approach also provides a systematic way to derive the complete set of generalized Baxter equations for super spin chains. Membre de l’Institut Universitaire de France Email: [email protected], [email protected], [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebraic Bethe ansatz for the gl(1|2) generalized model and Lieb-Wu equations

We solve the gl(1|2) generalized model by means of the algebraic Bethe ansatz. The resulting eigenvalue of the transfer matrix and the Bethe ansatz equations depend on three complex functions, called the parameters of the generalized model. Specifying the parameters appropriately, we obtain the Bethe ansatz equations of the supersymmetric t-J model, the Hubbard model, or of Yang’s model of elec...

متن کامل

Baxter Equation for Long-range Sl(2|1) Magnet

We construct a long-range Baxter equation encoding anomalous dimensions of composite operators in the SL(2|1) sector of N = 4 supersymmetric Yang-Mills theory. The formalism is based on the analytical Bethe Ansatz. We compare predictions of the Baxter equations for short operators with available multiloop perturbative calculations.

متن کامل

Hirota Equation and Bethe Ansatz

The paper is a review of recent works devoted to analysis of classical integrable structures in quantum integrable models solved by one or another version of the Bethe ansatz. Similarities between elements of the quantum and classical theories of integrable systems are discussed. Some key notions of the quantum theory, now standard in the quantum inverse scattering method, are identiied with ty...

متن کامل

2 8 M ay 2 00 7 Bäcklund transformations for difference Hirota equation and supersymmetric Bethe ansatz ∗

We consider GL(K|M)-invariant integrable supersymmetric spin chains with twisted boundary conditions and elucidate the role of Bäcklund transformations in solving the difference Hirota equation for eigenvalues of their transfer matrices. The nested Bethe ansatz technique is shown to be equivalent to a chain of successive Bäcklund transformations " undressing " the original problem to a trivial ...

متن کامل

Thermodynamic Bethe ansatz equation for osp(1|2) integrable spin chain

The thermodynamic Bethe ansatz is applied to a quantum integrable spin chain associated with the Lie superalgebra osp(1|2). Using the string hypothesis, we derive a set of infinite number of non-linear integral equations (thermodynamic Bethe ansatz equation), which characterize the free energy. The low temperature limit of the free energy is also discussed. Modern Physics Letters A, in press. S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007